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Abstract 

The EIT/EEG forward solution in anisotropic inhomogeneous media like head tissues belongs to the 
class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. 
The proposed numerical scheme is based on the finite-difference approximation of the corresponding 
discrete problem for the anisotropic inhomogeneous Poisson equation in an arbitrary three-
dimensional computational domain, augmented to a cuboid with non-conducting claddings and the 
boundary conditions defined at the facets of the cuboid (the Dirichlet type). The rectangular uniform 
finite difference grid is assumed to have high enough resolution across the characteristic layers of 
inhomogeneity. The nonconductive claddings imitate the Neumann boundary condition on the 
arbitrarily shaped surface of the embedded object. The discrete problem is reduced to solving a 
system of linear algebraic equations with a 19-diagonal sparse matrix. Use of iterative methods from 
the BiCG family is most effective with the adequate choice of preconditioners. As a preconditioner in 
this problem, we have employed an analog of the finite difference operator of the corresponding 
discrete problem with constant coefficients ( the homogeneous problem). This type of preconditioning 
is known as the Fourier-Laplace (FL) preconditioning and it is an option of choice due to the relative 
similarity of the eigenvalues spectral characteristics for the homogeneous and inhomogeneous discrete 
problems. Also, the method is attractive due to the possibility of matrix diagonalization with the 
discrete fast Fourier transform. The proposed algorithm has been validated against analytics in a 
spherical model and tested on the anatomically accurate MRI based human head geometry and 
showed high efficiency. The FL type preconditioner in the BiCG method allowed to reduce the 
number of iterations to convergence by factor of several dozens. Furthermore, in this case it is 
possible to model extremely high heterogenity including metal surgical clips and implants and  
eliminate the characteristic increase in the number of iterations with the increase of resolution of the 
discrete problem. Overall, the proposed technique is comparable with efficiency of the multigrid finite 
difference iterative methods.  

 

 



1 Introduction 

The progress in forward and inverse modeling in Electrical Encephalography (EEG) source 
localization and Electrical Impedance Tomography (EIT ) depends on the efficiency and accuracy of 
the employed forward solvers for the governing partial differential equation (PDE) , the Poisson 
equation,  describing the volume conduction in highly heterogeneous and anisotropic human head 
tissues.  

The modern forward solvers use the variety of computational approaches  based on the finite 
difference, boundary element and finite element methods [1-3], multigrid [17] and preconditioned 
CG-type  iterative methods [ 15,16, 18] and also  high performance parallel computing techniques 
[4,6,20, 21]. 

Previously, we built an iterative finite difference forward problem solver for an isotropic version of 
the Poisson equation for EEG/EIT based on the multi-component alternating directions implicit (ADI) 
algorithm [6]. It is a generalization of the classic ADI algorithm, but with improved stability in 3D 
(the multi-component FD ADI scheme is unconditionally stable in 3D for any value of the time step 
[7,8]). To describe the electrical conductivity in the heterogeneous biological media within arbitrary 
geometry, the method of  embedded boundaries or a fictitious domain has been used [14].  Here an 
object of interest is embedded into a cubic computational domain with extremely low conductivity 
values in the external complimentary regions modeling the surrounding air.  This effectively 
guarantees there are no current flows out of the physical area.  The idea of the iterative implicit 
method is to find the solution as a steady state of the appropriate evolution (diffusion) problem.  At 
every iteration step, the spatial operator is split into the sum of three 1D operators, which are 
evaluated alternatively at each sub-step.  Such a scheme is accurate to O[! +("x)2 )+("y)2+("z)2].  In 
contrast with the classic ADI method, the multi-component ADI uses the regularization (averaging) 
for evaluation of the variable at the previous instant of time. Parallelization of the vector-additive ADI 
algorithm in a shared memory multiprocessor environment (OpenMP) is straightforward, as it consists 
of nests of independent loops over “bars” of voxels for solving the effective 1D problem in every 
iteration [6].  However, the ADI method  is less suitable for implementation in an environment with a 
distributed memory.  Therefore  we also presented in the past an anisotropic  vector-additive 
algorithm [21 ]  of the domain decomposition type [9] which is potentially amenable for 
implementation at greater parallel degree [4]. 

The methods belonging to the family of the Conjugate Gradient (CG) methods [13, 15, 17 ] have 
become the most attractive recent iterative techniques for  solving the forward EEG /EIT problem. 
These methods have the high convergence rate to reach the required accuracy which is proportional to 
a square root from a  condition number  of a system matrix in Large Algebraic Equations (LAE).  In 
case of a finite difference grid , a condition number of a system matrix is inversely  proportional to a 
grid step squared resulting in increase of the iteration number with the grid resolution. Additionally, a 
condition number depends from the heterogeneity of coefficients in PDE, in particular , the ratio of 
maximal and minimal conductivities in the media. To reduce a condition number,  one needs to 
implement preconditioned CG-type iterative methots such as BiCG [15] and BiCGStab [17] in  cases  
of  strongly heterogeneous and anisotropic conductive media.  In this paper we demonstrate  
applicability of the finite difference method using benefits of the Fast Fourier Transform technique as 
a tool for building a quasy-optimal preconditioner for the CG type iterative solvers. As a quasy –
optimal preconditioner we suggest the matrix of the corresponding Dirichlet problem with 
homogeneous isotropic coefficients in the same ficticious computational domain. In spite of this idea 



is not new (see for instance [14]), for the EIT/EEG  configutations it was used so far  only in our 
previous work on the isotropic  cylinder phantom EIT forward solver [16]. 

It is worth to note, that the spectrally quasy-optimal  preconditioner  based on FFT has no analogies in 
FEM using adaptive nonuniform grids. In addition, our FDM choice is dictated by the rectangular 
voxels form of the medical imaging modalities surving as input geometries in EEG/EIT and linear 
dependence of the FDM solution accuracy  from the rectangular medical image resolution.  

    

2  Finite-Difference  Model 

The relevant frequency spectrum in EEG, MEG and EIT of the human head is typically below 1 kHz, 
and most studies deal with frequencies between 0.1 and 100 Hz.  Therefore, the physics of EEG/MEG 
can be well described by the quasi-static approximation of the Maxwell equations, the Poisson 
equation [3].  The electrical forward problem can be stated as follows: given the positions, 
orientations and magnitudes of dipole current sources, , as well as geometry and electrical 
conductivity of the head volume ( ), calculate the distribution of the electrical potential on the 
surface of the head (scalp) (#$).  Mathematically, it means solving the inhomogeneous anisotropic 
Poisson equation [2]: 

, in                                                      (1a) 

with no-flux Neumann boundary conditions on the scalp: 
!

%(&u) • n = 0, on #$.                                                   (1b) 

Here %= %ij(x,y,z) is an inhomogeneous symmetric tensor of the head tissues conductivity.  Having 
computed potentials u(x,y,z) and current densities  J=- %(&u), the magnetic field B can be found 
through the Biot-Savart law.  The similar non-stationary anisotropic diffusion equation is relevant also 
in the DOT forward problem modeling [1],  spread of tumor in brain [3]  and the white matter 
tractography studies using diffusion tensor MRI imaging [5].  

In this paper we will use finite difference approximation of the spatial derivatives on the uniform 
rectangular grid with a 19-point stencil made of 8 voxels with one common node, as shown in Fig. 1. 
All stencil nodes belong to three mutually orthogonal planes. Let us illustrate the discretization on the 
example of plane Oxy. For approximation of the second derivatives we have used the standard 
conservative scheme for the finite volumes [7,10]: 

   (2) 

where ,  ands indices ( superscripts and subscripts )  refer  to conductivity 

parameters and potentials in corresponding stencil nodes , as shown in Fig. 1. For approximation of 
the mixed derivatives we have investigated  five kinds  of the second order accuracy schemes.  As an 
example we present here these approximations only for one of the mixed derivatives:  



A.  

 

B.  

C.   (3) 

D. . 

E. , 

where  . One can see that in the homogeneous case of constant conductivity all of 
these approximations (except the case (3B)) are equivalent. In the case of inhomogeneous anisotropic 
medium approximation (3A) is usually preferable due to its conservative nature [7], similarly to the 
finite volume approximation used in Eq. 2. Finite difference approximation (3B) is also conservative 
and satisfies the grid maximum principle under some conditions [7,8]. Finite difference 
approximation (3C) is a simple modification of scheme (3A) with some averaging of the coefficients 
similar to approximation (2).   Scheme (3D) is a generalization for the inhomoheneous case of the 
typical four-points approximation of mixed derivatives with constant coefficients. Finally, Finite 
difference approximation (3E) is a conservative scheme with an additional important property in 
comparison with (3A-3D): It uses the same stencil nodes for diagonal and off – diagonal conductivity 
tensor components. This property makes approximation (3E) more stable and ensures the positive 
definite property of the resulting tensor approximation on the local scale for piece-wise 
inhomogeneous anisotropic media which are typical for the multi-shell EEG/MEG/EIT forward 
models.  Approximation of type 3(C) is the simplest one and not conservative. For all cases under 
consideration,  the discretized problem is reduced to solving a large system of Linear Algebraic 
Equations (LAE) with a square 19- diagonal matrix  (Fig. 2)  of dimension , and iterative 

methods are the best option of choice to deal with such systems of  LAE. 

As one of the simplest form of  preconditioning  almost not requiring additional computations one can 
suggest the Jacobi ( diagonal)  preconditioner type [12]. It allows to reduce a number of iterations in 
PDEs with strongly inhomogenious coefficients like in the Derichlet problem in the fictitious domain 
we are dealing here. However, the Jacobi preconditioner  does not damp the  increase  in a number of  
iterations  with the increase of  a grid resolution.  In addition to the Jacobi preconditioner, one can use 
as a preconditioner the system matrix corresponding to the case of the homogeneous isotropic limit. 
Because the Fast Fourier Transform (FFT) can be utilized to compute an inverse matrix of such a 
preconditioner, such kind of preconditioners is referred to as the Fourier preconditioner [11,14]. 
Along with image reconstruction problems, the Fourier preconditioner is successfully used in 
numerical analysis of PDEs [11-14] including the Poisson Equation in   EIT/EEG [16]. In many cases, 
the Fourier preconditioner allows to eliminate dependence of an iteration number to convergence from 



the grid resolution, as in case of the multigrid preconditioner [17]. We have checked efficiency of the 
mentioned types of preconditioned iterative methods using their standard realization in Matlab [18]. 
Taking into account the Dirichlet boundary conditions we have modified the module of 
postprocessing for the Fourier preconditioner by use of the sin-Fourier transform.  

3 Validation and Numerical Examples  

Numerical modeling of smooth analytic probe solutions for the Dirichlet problem has proved to be of 
the second order of approximation in regards of the grid step for all three approximations of mixed 
derivatives (3a), (3b) and (3c) .We have also validated the numerical methods against the analytics in  
the  layered anisotropic spherical model [3].  Based on these simulation tests we have derived the 
performance figures for suggested numerical method.  We have considered the popular in EEG 4-shell  
spherical model with the external radii of shells (in m) : R1=0.084; R2=0.065;  R3=0.05; R4=0.03 and 
conductivities of shells (S/m) : !1 = 0.44;  !2 = 0.02; !3 = 1.8; !4 = 0.25 correspondingly. The second 
outer shell modeling skull was assumed to be anisotropic with the tangential to radial conductivities 
ratio !2"/!2R=10. The transformation from the local spherical coordinate system to the global Cartesian 
system was performed for each skull layer voxel according to : 

   

! 

"2 = AT"2
*A , 

where !2* is a diogonal conductivity tensor with eigenvalues (!2" , !2R , !2R  ) and A is a rotation 
matrix. The conductivity tensor in such a model of anisotropy is a fair approximation of the cranial 
plates conductivity in the human head [3]. The anisotropic spherical head was embedded into the 
fictitious cubic computational domain with the edge length of 0.1 m padded with dielectric media (air) 
with the conductivity of 10-10  S/m. The resulted computed topography is shown in Fig 3 for a source 
– sink pair, placed on the equator in the middle of the outer shell. In the bottom of Fig. 3 the simulated 
topography is compared with an approximate analytical solution [19].  The results show good 
agreement of the numerical solution with the analytics with some perceptible deviations near the 
dipole source, where it might be expected due to difference in discrete and analytical current source  
approximations.  

To study the performance of the suggested method we have investigated dependence of the 
convergence rate from the grid resolution and the type of finite difference approximation.  The 
number of iterations and the total computation time required to reach the given accuracy as a function 
of grid node number is shown in Fig. 4 and 5.  For the smooth  Dirichlet type solutions the  BiCG  
method with the Jacobi-Fourier preconditioner requires not more than 10 iterations independently 
from the grid resolution and outperforms by a large factor  the BiCG method with and without the 
Jacobi preconditioner in terms of the computational time. The number of iterations to convergence is 
about the same for all five mixed derivatives approximations (3A-3E)  in all three preconditioned 
BiCG methods.  

When the piece-wise 4-shell spherical model was used , the more stable results were obtained with 
approximation type (3B) , while approximation  (3A) shows increase of iteration number in the BiCG 
JF method by factor of 2. The benefits of using the BiCG JF method are best pronounced for the 2 
mm resolution and higher. For instance, to reach the accuracy of '=10-5    the required iteration number 
is not larger than 30 and does not depend on the grid resolution. 



We have also tested our solver on the realistic MRI/CT based human head multishell model with the 
metal surgical clips in skull (shaped as a Greek letter “(” with dimensions 12 mm x 12 mm x 12 mm,  
a crossection of 2 mm x 4 mm, and titanium conductivity 2.5e6 S/m,) as it shown in Fig. 6 and brain 
white matter conductivity tensor inferred from DTI (Fig. 7  and 8).    

 

4 Discussion  

We have presented a novel type of an EEG/EIT anisotropic FDM forward solver from the CG  
methods family . The combined Jacoby-Fourier preconditioner shows unprecedented performance and 
robustness. It is capable to solve 128x128x128 voxels anisotropic problems with eigenvalues ratio 10 
: 1 and isotropic heterogeneity ratio  2.5e6 : 1 (explicit titanium clips modeling )  within a minute 
runtime in the Matlab implementation. More importantly for EEG and EIT applications, our 
simulation results show that isotropic brain white matter  versus anisotropic one  introduces an error 
of  up to 25 % for lead fields on scalp. 
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    Fig. 1. The finite difference stencil of discrete approximation for the anisotropic problem   



 

 

                 Fig. 2.  Structure of the system matrix (left) and the preconditioner (right ).!

 

 

 

 

 



 

 

Fig. 3. Validation of the numerical scheme against the analytical solution  in the anisotropic spherical 
model  ( de Munck and Peters, 1993) . The FD computed potentials (solid) and analytical (open 
circles)  curves  versus channel number.  The 4-shell spherical model with R1=0.084; R2=0.065;  
R3=0.05; R4=0.03 [m] and !1 = 0.44;  !2 = 0.02; !3 = 1.8; !4 = 0.25 [S/m] , !2"/!2R=10.  

 

  

 

 

 



 

Fig. 4.  Efficiency of different preconditioners for inhomogeneous smooth solutions (an analytical 
probe function) . Number of iterations (left) and runtime in seconds (right)  versus a mixed derivative 
approximation type for different resolutions (N3). 

 

 

 

 

 

 

 



 

 

 

Fig. 5. Efficiency of different preconditioners for the piece-wise heterogeneous anisotropic spherical 
model (cl. Fig. 3). Number of iterations (left) and runtime in seconds (right) versus a mixed derivative 
approximation type for different resolutions (N3).  Approximation C is  worse than others. 

 

 

 

 



 

 

 

Fig. 6a.   Modeling of impact of the titanium surgical clip (the white «pi») on the EEG forward  
solution in a “virtual” post-operational  patient. A horizontally oriented dipole is of 0.6 cm from the 
clip . The shunting effect is getting more pronounced with  the closer  distance between the dipole and 
the clip and parallel orientation as it can be seen through  the distortion  of current stream lines. 



      

 

Fig. 6b.   Impact of titanium surgical clip (the white «pi») on the EEG forward solution in post-
operational  patients. A horizontally oriented dipole is of 4 cm from the clip ( left column) and 2 cm ( 
right). The shunting effect is getting more pronounced with the closer distance between the dipole and 
the clip and parallel orientation as it can be seen through  the distortion  of equipotential lines. 



 

 

 

 

 

Fig. 7.   Impact of brain white matter anisotropy on the EEG forward  solution . A horizontally 
oriented dipole is placed deep in the central brain region.  The distortion of current streamlines  can be 
seen in the anisotropic case (left ) relatively to the isotropic case ( right). 

 

 

 

 

 



 

 

 

 

 

Fig. 8.   Impact of  brain white matter anisotropy on the EEG forward  solution : 3D topography view 
(top) and 1D Voltages (µV) versus Channel Number detailed quantitative comparison ( bottom)  . A 
horizontally oriented dipole is  placed deep in the central brain region. 


